
期刊简介
《中国卫生经济》杂志是由中华人民共和国卫生部主管,中国卫生经济学会、卫生部卫生发展研究中心(原卫生部卫生经济研究所)主办的卫生经济专业学术期刊。自1982年1月5日创刊以来,历经30年的不懈努力,在期刊影响力方面,《中国卫生经济》杂志不但集“中国中文核心期刊”、“中国科技核心期刊”和“RCCSE中国核心学术期刊”三大核心期刊称号于一身,而且还成为了医药卫生事业管理学科期刊中最具影响力的期刊(2011年影响因子为1.261,同学科期刊中排名第一)。
《中国卫生经济》杂志的办刊宗旨是:坚持党的四项基本原则,贯彻“百花齐放、百家争鸣”方针,研究社会主义卫生经济学理论,探索卫生经济客观规律,普及和提高卫生经济学知识,交流卫生经济管理和实践经验,理论联系实际,积极为卫生改革和发展服务。《中国卫生经济》杂志的读者、作者群主要为医药卫生行政部门及相关行政部门领导,医药卫生事业单位管理者,高等院校、科研机构的相关教学与研究人员,基层卫生经济工作者。
《中国卫生经济》杂志主要报道范围囊括卫生经济学所有研究领域,重点包括:卫生经济理论研究、卫生经济政策分析与评价、卫生筹资、卫生资源配置、区域卫生规划、医疗保障(医疗保险、医疗救助) 、新型农村合作医疗、公共卫生服务、社区卫生服务、农村卫生服务、卫生服务价格、卫生服务调查(卫生服务需求、供给与市场)、疾病经济负担、健康投资效益、健康与行为(危害健康的行为的卫生经济学)、医院经济运营、卫生财务管理与分析、会计与审计、成本核算、药物经济以及境外卫生经济动态等。《中国卫生经济》杂志始终坚持“理论与实践相结合、普及与提高相结合”和为卫生改革服务的报道原则,并一直努力做到理论与应用研究学术论文、实用性科技成果报告与工作实践总结以及业务指导与技术管理性文章三者统筹兼顾。
医学论文常见的医学分析模型工具
时间:2024-03-22 09:58:16
在医学分析中,除了Cox比例风险模型外,还有多种模型得到了广泛应用。以下是一些常见的医学分析模型:
逻辑回归模型:逻辑回归是一种用于处理二分类因变量的统计分析方法,在医学研究中常用于预测某种疾病的发生概率,或者评估某种治疗方法的有效性。例如,可以利用逻辑回归模型研究某种基因变异与疾病风险之间的关系。
线性回归模型:线性回归是一种用于研究一个或多个自变量与因变量之间的线性关系的统计分析方法。在医学研究中,线性回归模型常用于探索影响某种生理指标或疾病严重程度的因素。例如,可以利用线性回归模型研究年龄、性别、生活习惯等因素与血压水平之间的关系。
生存分析模型:除了Cox比例风险模型外,还有其他生存分析模型,如Weibull模型、指数模型等。这些模型都用于研究生存时间与影响因素之间的关系,但假设条件和适用场景略有不同。例如,Weibull模型可以更好地拟合某些具有非恒定风险函数的生存数据。
广义线性模型:广义线性模型是线性模型的扩展,可以处理因变量不服从正态分布或具有非线性关系的情况。在医学研究中,广义线性模型常用于分析计数数据(如发病率、死亡率等)或有序分类数据(如疾病严重程度等级)。例如,可以利用泊松回归模型研究某地区某疾病的发病率与环境因素之间的关系。
混合效应模型:混合效应模型是一种同时考虑固定效应和随机效应的统计分析方法,适用于处理具有层次结构或重复测量的数据。在医学研究中,混合效应模型常用于分析纵向数据(如多次测量的生理指标)或群组数据(如不同医院或地区的患者数据)。例如,可以利用混合效应模型研究不同治疗方法对患者生理功能随时间变化的影响。
神经网络模型:神经网络是一种模拟人脑神经元结构的计算模型,具有强大的非线性拟合能力和自学习能力。在医学研究中,神经网络模型常用于处理复杂的非线性关系或进行模式识别与分类。例如,可以利用神经网络模型预测某种疾病的发病风险或诊断结果。
决策树和随机森林模型:决策树和随机森林是基于树结构的分类与回归方法,在医学研究中常用于预测疾病风险、诊断结果或治疗效果等。这些方法可以直观地展示决策过程,并易于理解和解释。例如,可以利用决策树模型根据患者的症状和体征判断其可能患有的疾病类型。
总之,在医学分析中,各种统计模型和机器学习方法都得到了广泛应用,为医学研究提供了有力的支持。具体选择哪种模型取决于研究目的、数据类型和分析需求等因素。